lunes, 18 de febrero de 2019

SEMANA # 5

LABORATORIO 
Como en toda reacción, hay unas sustancias que reaccionan entre sí, los sustratos, para formar otras sustancias, los productos. Los sustratos de la combustión se denominan combustible y comburente:
  • combustible: es la sustancia oxidable, la que “arde”.
  • comburente: es la sustancia oxidante, la que provoca o favorece la combustión del combustible (no confundir con carburante, que es un tipo de combustible).
Los combustibles son sustancias que desprenden calor al oxidarse y algunos de los más habituales son hidrocarburos, tanto gaseosos como líquidos y sólidos. Por ejemplo, el butano es un hidrocarburo gaseoso, el gasóleo es líquido y el carbón es sólido. Entre los comburentes, el mas común es el oxígeno propio del aire.
Los productos derivados de la combustión dependen de los combustibles y comburentes implicados. En la combustión más típica, la de un hidrocarburo y oxígeno, los enlaces carbono-hidrógeno presentes en el hidrocarburo se rompen y ambos elementos se combinan con el oxígeno para formar dióxido de carbono (CO2) y vapor de agua (H2O).
Por ejemplo, en la combustión del metano (CH4) con oxígeno ocurre la siguiente reacción:
Combustioón de metano
Reacción de la combustión de metano y oxígeno
Como los enlaces C-H contienen más energía que los enlaces C-O y H-O, hay energía que se libera y es la causante del calor.
La combustión es una reacción imprescindible para muchas formas de vida de nuestro planeta, incluyendo los seres humanos, que utilizan la combustión controlada de nutrientes a nivel celular como fuente de energía. Por ejemplo, las mitocondrias utilizan la energía que desprende la combustión de glucosa para formar ATP, molécula que la célula puede utilizar posteriormente en sus procesos vitales que requieran de aporte energético.

Calor específico

El calor específico es la cantidad de calor que se necesita por unidad de masa para elevar la temperatura un grado Celsio. La relación entre calor y cambio de temperatura, se expresa normalmente en la forma que se muestra abajo, donde c es el calor específico. Esta fórmula no se aplica si se produce un cambio de fase, porque el calor añadido o sustraido durante el cambio de fase no cambia la temperatura.

El calor específico del agua es 1 caloría/gramo °C = 4,186 julios/gramo °C que es mas alto que el de cualquier otra sustancia común. Por ello, el agua desempeña un papel muy importante en la regulación de la temperatura. El calor específico por gramo de agua es mucho mas alto que el de un metal, como se describe en el ejemplo agua-metal. En la mayoría de los casos es mas significativo comparar los calores específicos molares de las sustancias.
De acuerdo con la ley de Dulong y Petit, el calor específico molar de la mayor parte de los sólidos, a temperatura ambiente y por encima, es casi constante. A mas baja temperatura, los calores específicos caen a medida que los procesos cuánticos se hacen significativos. El comportamiento a baja temperatura se describe por el modelo Einstein-Debye para el calor específico.

No hay comentarios:

Publicar un comentario